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The synthesis of an i=erative algorithm for determining the parameters in the gen- 
eralized heat-conduction equation from the results of temperature measurements is 
discussed. 

Inverse heat-transfer problems have undergone vigorous theoretical development and broad- 
ening areas of practical application in recent years [I]. An important class of such problems 
comprises coefficient inverse heat-conduction problems, in which it is required to reconstruct 
the thermophysical coefficients from temperature measurements at interior points of the inves- 
tigated body for a particular mathematical model of the heat§ process and given bound- 
ary conditions. Of particular significance is the analysis of transient coefficient inverse 
problems [2]. Inverse problems, as a rule, belong to the class of ill-posed prohlems of math- 
ematical physics [3]. Iterative methods have been found to be highly effective for their sol- 
ution [4, 5]. 

In this article we consider the problem of determining the constant values of the set of 
thermophysical coefficients~c, ~, k, and Q from the conditions 
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where q:(T), qa(T), fi(~) a~e known functions. 

We assume that the investigated coefficient inverse problem has a unique solution. This 
assumption is based on the results of [6], in which it is proved that the solution of the 
analogously stated problem for the nonlinear homogeneous heat-conduction equation is unique. 
The principal objective of this study is to carry out a practical analysis of the problems 
of the uniqueness of solution and the possibility of synthesizing iterative algorithms of 
the gradient type [5] for determining the set of thermophysical parameters from the solution 
of the inverse problem. 

The assumption of constancy of the thermoPhysical characteristics imposes definite lim- 
itations on the domain of practical application of the analyzed statement of the problem, be- 
cause in real situations the tharmophysical properties depend on the temperature. The pro- 
posed algorithm can be used when the temperature range realized in the investigated sample 
does not exceed a specific value in a time interval in question, According to the results 
of, for example, [7], this range is 500-700~ 

We treat the inverse problem as an optimal control problem, where the control functiom 
is the vector of parameters R = {c, %, k, Q}. As the criterion for the selection of the un- 
knowns we consider the mean-square residual 
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We form the solution of the extremal problem (1)-(6) with the use of gradient minimiza- 
tion procedures. We derive an expression for the components of the gradient of the function- 
al in terms of the unknown parameters. 

We represent the system of Eqs. ;i(i)-(5) as the problem of the heating of an unbounded 
multilayered plate with layers having identical thermophysical properties. We assume that 
"ideal" contact is established between the individual layers and that the contact thermal re- 
sistances are equal to zero. We then obtain 
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The inverse problem entails calculating the vector R = {c, %, k,:Q} from the condition 
of minimization of the functional (6) subject to conditions (7)-(13), 

We assume that the components of the vector R have acquired small increments Ac, A%, Ak, 
AQ. Then the temperature Ti(x , T) acquires an increment @i(x, T). Using relations (7)-(13), 
we can show that the function @i(x, z) satisfies the following boundary-value problem in the 
linear approximation: 
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We now introduce the boundary problem adjoint to the system (7)-(13): 

- - - c  , = Z  k - O < r . . . < ~ ,  , q < x < & + ~ ,  
Or Ox ~ Ox " 

i =  I, 2 . . . . .  N - - l ;  

~ Og'~ (0, r) 
�9 = / e r  (0, ~); 

a.v 

(21) 

(22) 

Ox 

*~_~ (xi, "0 = *~ (x~, "0; 

0r ax(Xi' "0 ] __- 2 IT~ (xi, r) - -  [~ (,)], 

i =  2, ~, . . , ,  N - -  1; (24) 

~. & G ' - ,  (b, "~) --_ le~]~v_~ (b, r); (25) 
Ox 

(23) 

~i(x,  T m ) = 0 ,  i = 1 ,  2, . . . ,  N - - I .  (26)  

Then, making use of relations (24), (22), and (17), we write the increment of the objec- 
tive functional (20) in the form 
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or, on the basis of Eqs. (14), (21) and relations (26), (18), arid (23): 
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Knowing the values of the gradients of the functional, we can construct a successive- 
approximation procedure on the basis of one of the gradient methods, for example, the method 
of conjugate gradients [8]. 
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The results of preliminary calculations have show~ that with the conventional choice of 
descent step common to all unknown parameters the convergence of the given algorithm to the 
true values of the unknown parameters depends strongly on thepredetermined values of the 
initial approximation. Moreover, the rate of convergence is strongly affected by the rela- 
tions between the separate unknowns, a fact that characterizes a~y real material~, As a re- 
sult, in the approach described here every specific practical problem can evolve into a labor- 
ious process of numerical parametric modeling. 

To circumvent these ahortcomings we have borrowed from [9] a procedure for selecting the 
descent step in vector form. In this case the new approximation of the unknown parameters is 
calculated according to the formula 

R(S+~ ~ Rr + ~(s) o ( S ) ,  

where (32) ~(s) = {e(s), ~(s), ~(s), r R =  {c, %, k, Q}; G(S)=--I'~S)+ 
_ :~(s) G(s-,); acs) -- {G~ s), G~ s), a(ff ), G~s)}; I "(s) = {I'~ (s), ,z"(s), l~(S), i'Q(s)} 

i s  t h e  d e p t h  o f  d e s c e n t ;  and S i s  t h e  number  o f  i t e r a t i o n s .  in which e (8)  
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By the linearityof (33)-(38) the solution of the problem can be written in the form 

0 (x, ~, ~s)) = 0~., (x, ~, ~s~) + ~,.~ (x, ~, ~f~) + ~,.3 (x, ~, ~ ) )  + O,,~ (x, ~, ~ ) ) .  

The values of the descent steps are se lected from ghe c o n d i t i o n  of  m in im iza t i on  of  the 
objective functional (6). For the determination of a (S) we obtain the system of linear alge- 
braic equations 

N-- I  1: m N - - !  .~m A'--] ~ m  

i = 2  0 f=2 0 f=2 0 

A' - - I  "[m N--I ~m 

+ s  o ) I r , - - I , ) < . , d T .  j .=1 ,  2, 3, 4. 
i ~ 2  D i ~ 2  0 

(39) 

The iterative procedure is constructed as follows. We specify the initial values of the 
unknown parameters, solve the direct heat-conduction problem (7)-(13), and determine t~e temp- 
erature field. Then we solve the adjoint problem (21)-(26) and calculate the components 
of the gradient of the objective functional according to Eqs. (28)-(31)o Next we solve prob- 
lem (33~-~38) and from the solution of the system of equations (39) calculate the descent 
steps a (S) �9 The new approximation of the parameters is determined from expression (32), and 
the computational process is repeated. For the case in which the exact values of the input 
temperatures are known, the iteration process is halted when the unknown obtained in two suc~ 
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cessive iterations "hold." In the event that the input temperatures are given with errors, 
the process is stopped in accordance with the residual criterion, i.e., upon fulfillment of 

the condition 

N--I ~m 

i~2 0 

[T i (Xi, T) - -  [i 00t 2 d~ ~ 62, 

N--1 Tr~ 
where 6 z ~  Z I o~d~ is the estimator of the generalized error of the initial data and oi(T) 

i=2 

is the standard deviation of the input temperatures at the points x = x. at time ~. 
l 

A regularized algorithm for the solution of the given inverse heat-conduction problem 
[4] is implemented under this approach. 

The above-described algorithm formed the basis of a FORTRAN program for the BESM-6 com- 
puter. We used an implicit scheme for the approximation of the boundary-value problems [i0] 
on a grid m = {x i = hi, i = 0, i, 2, ..., N; Tj = ATj, J = 0, i, 2, ..., m}. 

We now give a few examples illustrating the efficiency of the proposed algorithm. The 
values of the reconstructed thermophysical parameters in the generalized heat-conduction equa- 
tion (i) for perturbed input data are given in Table I. 

For the exact solution of the model example we consider the variant in which the follow- 
ing initial data are specified: c = k = k = Q = i, q1(z) = 2~, q2(T) = 0, T = i, b = i, To = 
O. The initial approximations of the unknown parameters are chosen within~he limits of • 
of their exact values. The input temperatures are specified at points with the coordinates 
x= = 0.2; x3 = 0.4; x~ = 0.6; x5 = 0.8. The perturbations of the initial temperatures are 
modeled by a random number generator according to a uniform law within 5% error limits of the 
maximum temperature. It is essential to note that the results of determining the parameters 
c, %, k, and Q agree with the sought-after values correct to four significant figures at the 
exact input data. 

For a practical proof of the uniqueness of the solution in determining the thermophysi- 
cal coefficients in the generalized heat-conduction equation we solve the following problem. 
As the exact solution we specify the temperature field obtained from the solution of the homo- 
geneous heat-conduction equation, i.e., in Eq. (i) we put k ~ Q E 0. 

In the initial approximation we specify four coefficients in the generalized equation 
and, as a result of the solution, obtain zero values for the ccnvection term and source, 
along with the exact values of the reconstructed parameters. The results of solving the given 
problem are given in Table i. 

In using the a~gorithm for the data processing of real heat experiments for evaluating 
the coefficients in Eq. (i) the time to solve the problem did not exceed 2.5 min on a comput- 
ing grid with parameters N = 51 and m = 61 for practically any values of the initial approx- 
imation. 

TABLE i. Values of Reconstructed Parameters (c, ~, k, 
Q = 0.5 in the first iteration) 

No.~ I J iterations Q 

3 
4 
5 

2 
5 

10 

Perturbed input temperatures 
0,ff?fi I 0,751 0,781 
0,753 i 0,901 0,960 
0,911', 0,939 0,957 

-0~933 , 0,968 0,989 

Homogeneous heat-conduction equation 
.0:747 [ 0,763 1 0,402 
l;O0~: ~ l,O00 9,703-i0 -6 
i ,000 1,000 8,309. lO - s  

0,710 
0,809 
0 , 9 0 3  
0,931 

O, 244 
i ,085-  10 - s  
1,147- 10 -s 
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In conclusion we note that the proposed algorithm fQr solving the coefficient inverse 
heat-conduction problem is readily generalized to the case in which the thermophysical char- 
acteristics depend on the time, a space coordinate, or the temperature. In particular, the 
given method can be used directly for determining the piecewise-constant variations of the 
unknown characteristics as a function of the temperature [7] and the time. 

NOTATION 

c, volume specific heat; % , thermal conductivity; k, a coefficient characterizing fil- 
tration; Q, distributed heat source (sink); T, temperature; x, coordinate; ~, time; To, ini- 
tial temperature; q, heat flux; �9 m, right endpoint of time interval; f(T), input temperatures; 
I, functional; ~ , error of input data; q~, q2, values of heat flux at left and right boundar- 
ies, respectively; b, right endpoint of spatial interval; ~, temperature increment; ~, adjoint 
variable; x., coordinate of layer boundary; ~, descent step; i, space index; j, time index; 
N, number o~ layer boundaries. 
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